Influence of the range of data on the performance of ANN- and SVM- based time series models for reproducing groundwater level observations

Main Article Content

Heesung Yoon
Yongcheol Kim *
Soo-Hyoung Lee
Kyoochul Ha
(*) Corresponding Author:
Yongcheol Kim | yckim@kigam.re.kr

Abstract

In the present study, we designed time series models for predicting groundwater level fluctuations using an artificial neural network (ANN) and a support vector machine (SVM). To estimate the model sensitivity to the range of data set for the model building, numerical tests were conducted using hourly measured groundwater level data at a coastal aquifer of Jeju Island in South Korea. The model performance of the two models is similar and acceptable when the range of input variable lies within the data set for the model building. However, when the range of input variables is beyond it, both the models showed abnormal prediction results: an oscillation for the ANN model and a constant value for SVM. The result of the numerical tests indicates that it is necessary to obtain various types of input and output variables and assign them to the model building process for the success of design time series models of groundwater level prediction.


Downloads month by month

Downloads

Download data is not yet available.

Article Details